# CONSTRUCTION AND GEOLOGIC LOG OF THE SOUTH WAILUA MONITOR WELL (STATE WELL 2-0121-01), LIHUE, KAUAI, HAWAII

By Scot K. Izuka and Stephen B. Gingerich

U.S. GEOLOGICAL SURVEY

Open-File Report 97-38

Prepared in cooperation with the

COUNTY OF KAUAI DEPARTMENT OF WATER



# U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary



U.S. GEOLOGICAL SURVEY
Gordon P. Eaton, Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to: Copies of this report can be purchased

from:

District Chief U.S. Geological Survey 677 Ala Moana Blvd., Suite 415 Honolulu, HI 96813 U.S. Geological Survey Branch of Information Services Box 25286

Denver CO 80225-0286

### **CONTENTS**

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inch (in.)           | 2.54                  | centimeter                                  |    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------------------------------------|----|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Multiply             | Ву                    | To obtain                                   |    |
| CONVI          | ERSION FACTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S, ABBREVIATIONS     | , AND VERTICAL DA     | TUM                                         |    |
| 2. Su          | mmary of construc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion of the South Wa | ailua monitor well (S | tate well 2-0121-01), Kauai, Hawaii         |    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       | nitor well, Kauai, Hawaii                   |    |
| TABLE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             |    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             | 8  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       | the South Wailua monitor well (State        |    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Wailua monitor wel    | (State well 2-0121-01), Kauai, Hawaii       | 6  |
| 3-4.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             |    |
|                | 2. Geology of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he Lihue basin area, | Kauai, Hawaii         |                                             | 3  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       | 12-0121-01) and existing wells in the Lihue | 2  |
| 1–2.           | Maps showing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                       |                                             |    |
| FIGUR          | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                       |                                             |    |
| Append         | 11X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                       |                                             | 10 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             |    |
|                | A COLUMN TO THE PROPERTY OF THE PARTY OF THE |                      |                       |                                             |    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             |    |
| Drilling       | Methods and Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ory                  |                       |                                             | 5  |
| 1              | Acknowledgments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             | 4  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             |    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             |    |
| 7 33 2 37 37 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |                                             |    |
| Abstrac        | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                       |                                             | 1  |

0.3048

0.02832

3.785

1.609

meter

cubic meter per minute

liter per minute

kilometer

#### **Other Useful Conversions**

 $1 \text{ ft}^3/\text{s} = 448.8 \text{ gal/min}$ 

 $1 \text{ ft}^3/\text{s} = 0.6463 \text{ Mgal/d}$ 

#### Vertical datum

All elevations in this report are referenced relative to mean sea level.

foot (ft)

cubic foot per minute (ft3/min)

gallon per minute (gal/min)

mile, statute (mi)

#### Abbreviation:

μS/cm, microsiemens per centimeter at 25 degrees Celsius.

## Construction and Geologic Log of the South Wailua Monitor Well (State Well 2-0121-01), Lihue, Kauai, Hawaii

By Scot K. Izuka and Stephen B. Gingerich

#### **Abstract**

The South Wailua monitor well, located in the Lihue basin near the western slope of Kalepa Ridge, was drilled in 1995 to study the hydrology and geology in an area where no other well information is available. The well was drilled to an elevation of -854 feet from a ground elevation of about 289 feet and penetrated a 1,143-foot section of mafic lava flows (which may include nephelinite, melilitite, basanite, and alkalic basalt, in part highly weathered), alluvial gravel, clay, and a layer of mudstone (possibly weathered ash) with wood fossils. Little water was found during drilling. An aquifer test was attempted but the pump became clogged with mud. A water-level elevation of 13.9 feet was measured before the test.

#### INTRODUCTION

The Lihue basin is the center of population, government, and industry for Kauai. Recent population growth in the basin has greatly increased the demand for water in the area. The economic setback caused by Hurricane Iniki in 1993 slowed growth on Kauai and may have kept the water supply from reaching a critical stage; however, an ample water supply is needed for the island's economic recovery. Pre-Iniki studies placed Lihue's supply at the highest priority in Kauai's water plans (Commission on Water Resources Management, 1990).

The South Wailua monitor well (State well 2-0121-01) is one of six monitor wells drilled in the period from April 1995 to April 1996 by the U.S. Geological Survey (USGS) in cooperation with the County of Kauai Department of Water to study the availability of ground water in the southern Lihue basin (fig. 1). The six monitor wells were sited in areas where no wells had been drilled and no subsurface information was available. Five of the six monitor wells were drilled in the central part of the Lihue basin. The sixth well was drilled in the southern part of the basin. The South Wailua monitor well is about 1 mi from the nearest previously existing wells and provides data for defining the regional ground-water system of the Lihue basin. The Department of Water considers the South Wailua area as a potential site for future ground-water exploration and development.

The objectives of this study were met by analysis of data collected during and after the drilling operation. These data included (1) the driller's description of the drilling history and well-construction details, (2) water levels monitored as the well was deepened, (3) a caliper log of the uncased well boring, and (4) a description of the geology from rock chips (cuttings) brought to the surface during drilling. This report documents the location, drilling history, construction details, and geologic log of the South Wailua monitor well.

#### Setting

The South Wailua monitor well (State well 2-0121-01) is located in the Lihue basin, a large depression bounded on the west by the high mountains of central Kauai, on the south by Haupu Ridge, and on the north by the Makaleha Mountains (fig. 1). The area has undergone substantial stream erosion, weathering, and faulting followed by rejuvenated, sporadic, scattered volcanism. Two major stratigraphic units are found in the Lihue basin (fig. 2): (1) the Waimea Canyon Basalt

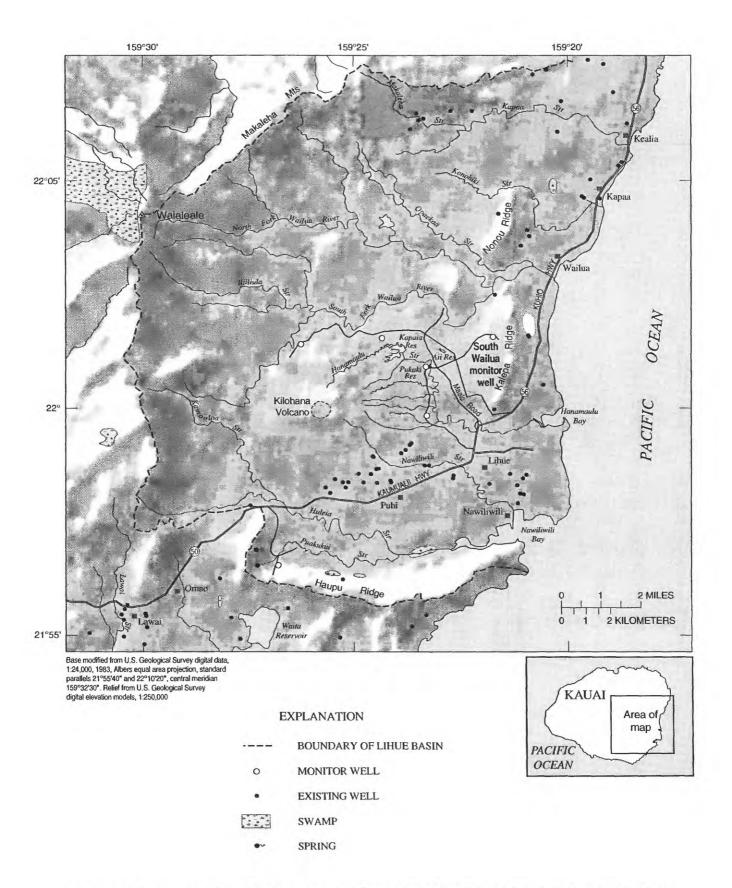



Figure 1. Location of the South Wailua monitor well (State well 2-0121-01) and existing wells in the Lihue basin, Kauai, Hawaii.

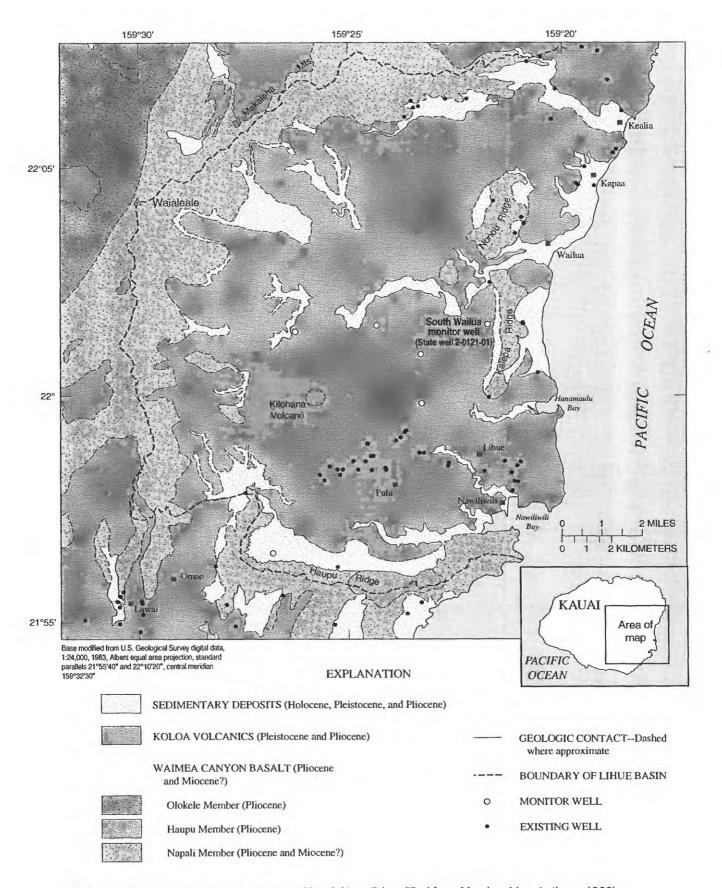



Figure 2. Geology of the Lihue basin area, Kauai, Hawaii (modified from Macdonald and others, 1960).

of Pliocene and Miocene (?) age which was erupted during the main shield-volcano-building stage of Kauai and forms the bulk of the island, including the mountains surrounding the Lihue basin, and (2) the Koloa Volcanics of Pleistocene and Pliocene age which include the rejuvenated-stage lava flows and sedimentary units that partly cover and fill the floor of the basin (Hinds, 1930; Stearns, 1946; Macdonald and others, 1960). Both the Waimea Canyon Basalt and the Koloa Volcanics have been given formational rank (Langenheim and Clague, 1987).

Kilohana Volcano in the center of the Lihue basin is a prominent edifice of the Koloa Volcanics. Macdonald and others (1960) described the Lihue basin as a subsidiary caldera that formed to the east of a central main caldera of the Kauai shield volcano. Stearns (1946) described the basin as the result of advanced stream erosion and the coalescing of many amphitheater-headed valleys. Numerous subsequent geologic investigations include a gravity survey (Kivroy and others, 1965), petrologic and geochemical analyses (Macdonald, 1968; Feigenson, 1984; Clague and Dalrymple, 1988; Maaloe and others, 1992), and radiometric dating (Clague and Dalrymple, 1988). These studies have advanced the understanding of the geology of Kauai, yet the origin of the Lihue basin remains an enigma.

Ground-water exploration in the Lihue basin has been only moderately successful, owing in part to the basin's complex ground-water hydrology. Most of the ground water in the Lihue basin is developed from wells in the Koloa Volcanics, which cover almost the entire basin floor. The Koloa Volcanics are generally considered to have low to moderate permeabilities (Macdonald and others, 1960), but specific capacities of wells in this unit are highly variable. Water levels during drilling in many of these wells declined with depth in the aquifer, indicating substantial vertical head gradients. At the base of the Koloa Volcanics and resting unconformably on the underlying Waimea Canyon Basalt, are the weathered rocks and sedimentary deposits that formed during the period of erosion between the shield-volcano eruptions and the rejuvenated volcanism. These deposits probably have low permeabilities and may retard the flow of water between the Koloa Volcanics and the Waimea Canyon Basalt.

The Waimea Canyon Basalt in the Lihue basin is represented by the Napali Member, the thick accumulations of thin lava flows that formed on the flank of the Kauai shield volcano. In western Kauai, the Napali

Member is extensive and forms the most permeable aquifers on Kauai, but in the Lihue basin, the Napali Member crops out only in the mountains encircling the basin. It is not certain whether any of the wells drilled thus far in the center of the basin have penetrated through the Koloa Volcanics and into the underlying Napali Member. Therefore, the thickness of the Koloa Volcanics and the hydrologic properties of the underlying Napali Member are unknown.

#### Location

The South Wailua monitor well (State well 2-0121-01) is located in the Lihue basin between sugarcane fields near the western slope of Kalepa Ridge (fig. 1, table 1). The site is on the western shoulder of a sugar plantation road, about 1.7 mi east of the intersection with Maalo Road. The well was assigned the well number 2-0121-01 by the State of Hawaii Commission on Water Resources Management using the State well numbering system.

Table 1. Location, elevation, and State number of the South Wailua monitor well, Kauai, Hawaii
[Datum is mean sea level]

| Latitude                                               | 22°01′31″N      |
|--------------------------------------------------------|-----------------|
| Longitude                                              | 159°21′47″W     |
| Ground elevation at brass plate in concrete pad        | 289.22 feet     |
| Measuring-point elevation at top of 4-inch well casing | 290.16 feet     |
| Distance and direction from Lihue                      | 3.2 miles north |
| Distance and direction from nearest shoreline          | 1.4 miles west  |
| State well number                                      | 2-0121-01       |

The area within a 1 mi radius of the well is covered by a network of artificial and natural surface-water bodies. The Wailua River is within 0.8 mi northwest of the well and a swamp lies 0.9 mi to the east on the other side of Kalepa Ridge. The well is located about 1.4 mi inland from the eastern coast of Kauai.

#### Acknowledgments

The construction, data collection, and testing of the South Wailua monitor well was made possible with the cooperation and assistance of Mr. Murl Nielsen, Manager and Chief Engineer, and the staff of the County of Kauai Department of Water. We are grateful to Mr. Sam Lee, Hawaii State Department of Land and Natural

Table 2. Summary of construction of the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii [Datum for water-level and bottom-of-hole elevations is mean sea level. Land surface elevation is about 289 ft above mean sea level; ft, feet]

| Date           |    | Significant events                                                                                                       |  |  |  |  |  |
|----------------|----|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| August 1995    | 12 | Drilling began                                                                                                           |  |  |  |  |  |
|                | 15 | Surface casing installed to 152 ft elevation                                                                             |  |  |  |  |  |
|                | 24 | Continued drilling to -8 ft elevation                                                                                    |  |  |  |  |  |
|                | 25 | Increase of water lifted out of well at -33 ft and -88 ft elevation; continued drilling to -168 ft elevation             |  |  |  |  |  |
|                | 26 | Attempt to log hole with caliper, blockage discovered at -33 ft elevation                                                |  |  |  |  |  |
|                | 28 | Water level 13.9 ft elevation and bottom-of-hole elevation -168 ft                                                       |  |  |  |  |  |
|                | 30 | Attempt aquifer tests, pump clogged with mud at -108 ft elevation                                                        |  |  |  |  |  |
| September 1995 | 22 | Water level 14.8 ft elevation and bottom-of-hole elevation -168 ft                                                       |  |  |  |  |  |
|                | 24 | Water level before drilling 14.7 ft elevation and bottom-of-hole elevation -168 ft; resume drilling to -251 ft elevation |  |  |  |  |  |
| October 1995   | 6  | Possible increase in water lifted out of well at -327 ft elevation; continued drilling to -330 ft elevation              |  |  |  |  |  |
|                | 7  | Possible increase in water lifted out of well at -432 to -552 ft elevation; continued drilling to -552 ft elevation      |  |  |  |  |  |
|                | 8  | Continued drilling to -754 ft elevation                                                                                  |  |  |  |  |  |
|                | 9  | Drilling terminated at -854 ft elevation (total depth of 1,143 ft)                                                       |  |  |  |  |  |
|                | 17 | Logged upper 640 ft of hole with caliper, blockage at -351 ft elevation discovered; began installing perforated casing   |  |  |  |  |  |
|                | 19 | Completed well construction                                                                                              |  |  |  |  |  |

Resources, for helping acquire permission to drill the well on State land and to Mr. Michael Furukawa for permitting the construction of the well on a part of the State land leased by Amfac/JMB Hawaii, Lihue Plantation. Drilling, aquifer-test, and elevation information were drawn extensively from the notes of G. Wayne Heick of the U.S. Geological Survey.

#### DRILLING METHODS AND HISTORY

The well was bored by rotary drilling with a 9-7/8in. diameter tungsten-carbide bit from the surface (289 ft elevation) to an elevation of -251 ft, and an 8-3/4-in. diameter tungsten-carbide bit from -251 ft to -854 ft. Air and foam were injected down through the hollow drill stem and circulated back up the space between the stem and the well boring to remove water and cuttings from the hole. Greater lifting power was needed as the drilling penetrated deeper below the water table. The depth of drilling was thus limited by the capacity of the air compressor to provide the circulation. Table 2 summarizes the construction history of the well.

The drillers reported wet clay from the surface, but no standing water until they had drilled 15 ft and the bottom of the hole was at 274 ft elevation. The drillers estimated that the amount of water lifted out of the hole by the compressor was at most only about 50 gal/min, which indicates that little water was flowing into the

well from the aquifer. The drillers also reported many unconsolidated sediment (especially clay) layers. Drilling was halted temporarily to attempt an aquifer test while the hole bottom was at an elevation of -168 ft. A water-level elevation of 13.9 ft was measured prior to the test. The pump immediately became clogged with mud so the test was halted. Drilling resumed from -168 ft elevation and was terminated when the bottom of the hole was at an elevation of -854 ft (1,143 ft total drilling depth). A caliper tool was run down the hole on October 17, 1995 to record the caliper arm extension, an indication of the variation in hole diameter with depth. At -351 ft elevation a blockage was discovered; casing was installed through the blockage down to an elevation of -561 ft and the well was completed on October 19, 1995. The elevation of a brass plate in the concrete pad at the well is 289.22 ft and the elevation of the measuring point at the top of the casing is 290.16 ft. Construction details of the finished well are shown in figure 3. Plans to conduct aguifer tests after the completion of the well were abandoned because of the small amount of water found during drilling and the likelihood that the pump would again become clogged with sediment.

#### **GEOLOGIC LOG**

The geologic log of the South Wailua monitor well was compiled by examination of cuttings brought to the

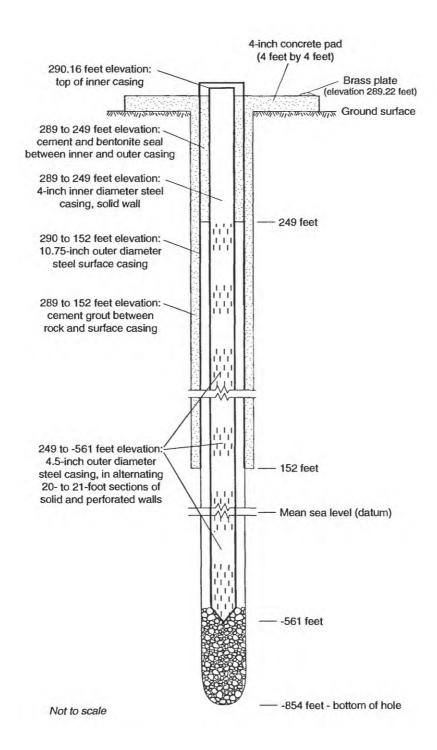



Figure 3. Construction details of the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii.

surface by the air and foam circulated through the well bore. Samples were collected at 5-ft depth intervals and air dried before being examined macroscopically. The complete lithologic descriptions appear in appendix 1; the geologic log is shown in figure 4.

The South Wailua monitor well penetrated a 1,143-ft section of mafic lava flows and alluvium ("mafic rock" in this report includes nephelinite, melilitite, basanite, and alkalic basalt, all of which are dark, fine-grained, igneous rocks but have specific compositions that are not distinguishable in hand specimen). The uppermost part of the section consists of a 30-ft layer of moist, sticky clay. Underlying the clay is a 165ft-thick section of lava flows (in part highly weathered), alluvium, and clay. This section is underlain by 35-ft layer of mudstone (possibly weathered ash) with wood fossils. Underlying the fossiliferous mudstone is a 395ft-thick section composed mostly of dense, aphyric mafic rock but also containing some sparsely vesicular mafic rock, amygdaloidal mafic rock, ash, clay, and alluvial gravel. The remaining 525 ft of rock penetrated by the well is composed almost entirely of alluvial gravel except for a few, thin, intercalated lava flows.

The caliper log of the South Wailua monitor well (fig. 4) shows intervals where the hole deviates from the drill-bit diameter. Rock layers that are unconsolidated or thin tend to crumble and cave to produce enlargements in the well boring. In contrast, rocks that are hard, massive, and thick tend to hold the shape of the boring, and thus give a smoother, unvarying log. Below the surface casing (surface casing shows as the smooth upper 130 ft of the caliper log), the log shows an enlargement between -21 and -31 ft elevation and another between -331 ft and -341 ft elevation that correspond approximately with some of the unconsolidated sedimentary layers shown in the geologic log. The well boring is slightly enlarged from an elevation of about -361 ft down to the bottom of the hole, which corresponds to the thick layers of unconsolidated sediments shown at the base of the geologic log.

#### SUMMARY

The South Wailua monitor well (State well 2-0121-01) is located in the Lihue basin between sugarcane fields near the western slope of Kalepa Ridge. The well was constructed during the period from August 12 to October 19, 1995 to study the hydrology and geology

in an area where no other well information is available. The ground elevation at the well is 289 feet and the well is 1,143 feet deep (bottom is at -854 feet elevation) and has a boring diameter of 9 to 10 inches. Flush-jointed 4inch (outer diameter) steel casing, with perforated sections between the water table and the bottom, was installed in the hole.

The amount of water lifted out of the hole during drilling was at most only about 50 gallons per minute, which indicates that little water was flowing into the well from the aguifer. An aguifer test was attempted while the hole bottom was at an elevation of -168 feet. The pump immediately became clogged with mud so the test was halted. A water-level elevation of 13.9 feet was measured prior to the test. At -351 feet elevation a blockage was discovered; casing was installed through the blockage down to an elevation of -561 feet.

The South Wailua monitor well penetrated a 1,143-foot section of mafic lava flows (in part highly weathered), alluvial gravel, clay, and a layer of mudstone (possibly weathered ash) with wood fossils.

#### REFERENCES CITED

- Clague, D.A., and Dalrymple, G.B., 1988, Age and petrology of alkalic post-shield and rejuvenated stage lava from Kauai, Hawaii: Contributions to Mineralogy and Petrology, v. 99, p. 202-218.
- Commission on Water Resource Management, 1990, State water resources protection plan: prepared by George A.L. Yuen and Associates for the Hawaii State Department of Land and Natural Resources, variously paginated.
- Feigenson, M.D., 1984, Geochemistry of Kauai volcanics and a mixing model for the origin of Hawaiian alkali basalts: Contributions to Mineralogy and Petrology, v. 87, p. 109-119.
- Hinds, N., 1930, The geology of Kauai and Niihau: Bernice Pauahi Bishop Museum Bulletin 71, 103 p.
- Kivroy, H.L., Baker, M., and Moe, E.E., 1965, A reconnaissance gravity survey of the island of Kauai: Pacific Science, v. 19, p. 354-358.
- Langenheim, V.A.M., and Clague, D.A., 1987, Stratigraphic framework of volcanic rocks of the Hawaiian Islands, in Decker, R.W., and others, eds., Volcanism in Hawaii: U.S. Geological Survey Professional Paper 1350, v. 1, p. 55-84.

- Maaloe, S., James, S., and Smedley, D., 1992, The Koloa volcanic suite of Kauai, Hawaii: Journal of Petrology, part 4, v. 33, p. 761-748.
- Macdonald, G.A., 1968, Composition and origin of Hawaiian lavas: Geological Society of America Memoirs, v. 116, p. 477-522.
- Macdonald, G.A., Davis, D.A., and Cox, D.C., 1960, Geology and ground-water resources of the island of Kauai, Hawaii: Hawaii Division of Hydrography Bulletin 13,
- Stearns, H.T., 1946, Geology of the Hawaiian Islands: Hawaii Division of Hydrography Bulletin 8, 112 p.

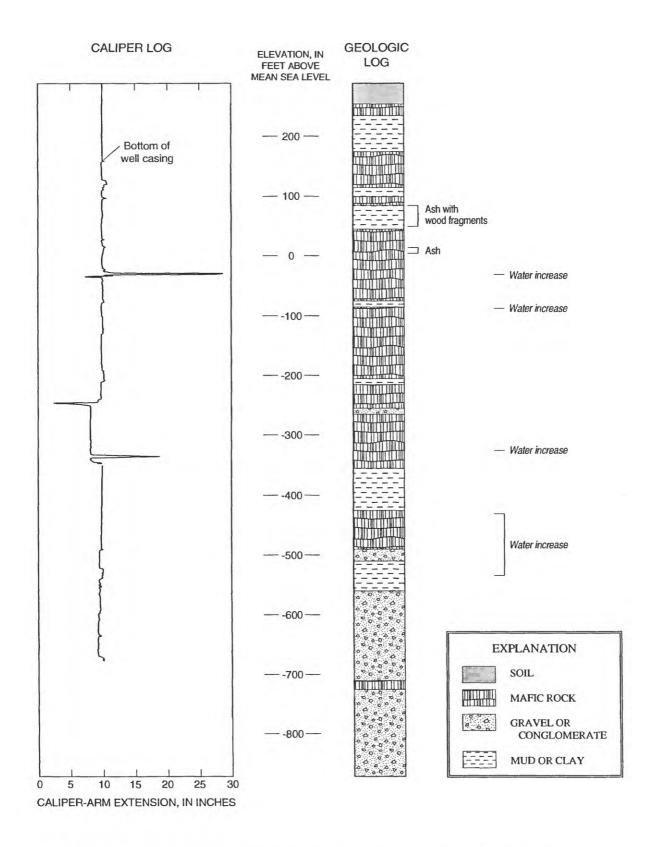



Figure 4. Geologic log and caliper-arm extension with depth in the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii.

Appendix 1. Lithologic descriptions of drill cuttings from the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii [Datum is mean sea level; depth measured from about 289 feet above sea level]

| Elevation (feet) |    |     | Depth<br>(feet) |    |     | Sample description <sup>1</sup>                                  |  |
|------------------|----|-----|-----------------|----|-----|------------------------------------------------------------------|--|
| 289              | to | 284 |                 |    | 5   | red-brown, sticky clay                                           |  |
| 284              | to | 279 | 5               | to | 10  | red-brown, sticky clay                                           |  |
| 279              | to | 274 | 10              | to | 15  | red-brown, sticky clay                                           |  |
| 274              | to | 269 | 10              | to | 20  | red-brown, sticky clay                                           |  |
| 269              | to | 264 | 20              | to | 25  | red-brown, sticky clay                                           |  |
| 264              | to | 259 | 25              | to | 30  | no sample                                                        |  |
| 259              | to | 254 | 30              | to | 35  | red-brown, sticky clay                                           |  |
| 254              | to | 249 | 35              | to | 40  | dark-gray, vesicular mafic clinker                               |  |
| 249              | to | 244 | 40              | to | 45  | dark-gray, vesicular mafic clinker                               |  |
| 244              | to | 239 | 45              | to | 50  | dark-gray, vesicular mafic clinker                               |  |
| 239              | to | 234 | 50              | to | 55  | dark-gray, dense, aphyric mafic rock                             |  |
| 234              | to | 229 | 55              | to | 60  | red-brown, sticky clay                                           |  |
| 229              | to | 224 | 60              | to | 65  | red sticky clay, no gravel                                       |  |
| 224              | to | 219 | 65              | to | 70  | red sticky clay, no gravel                                       |  |
| 219              | to | 214 | 70              | to | 75  | brown, sandy, gravelly mud                                       |  |
| 214              | to | 209 | 75              | to | 80  | brown, sandy, gravelly mud                                       |  |
| 209              | to | 204 | 80              | to | 85  | brown, sandy, gravelly mud                                       |  |
| 204              | to | 199 | 85              | to | 90  | brown, sandy, gravelly mud                                       |  |
| 199              | to | 194 | 90              | to | 95  | light-brown, sandy clay with flecks of white minerals            |  |
| 194              | to | 189 | 95              | to | 100 | light-brown, sandy clay with flecks of white minerals            |  |
| 189              | to | 184 | 100             | to | 105 | light-brown, sandy clay with flecks of white minerals            |  |
| 184              | to | 179 | 105             | to | 110 | light-brown, sandy clay with flecks of white minerals            |  |
| 179              | to | 174 | 110             | to | 115 | light-brown, sandy clay with flecks of white minerals            |  |
| 174              | to | 169 | 115             | to | 120 | purplish-gray, weathered, vesicular mafic rock with white clay   |  |
| 169              | to | 164 | 120             | to | 125 | purplish-gray, weathered, vesicular mafic rock with white clay   |  |
| 164              | to | 159 | 125             | to | 130 | purplish-gray, slightly weathered, vesicular mafic rock          |  |
| 159              | to | 154 | 130             | to | 135 | purplish-gray, slightly weathered, vesicular mafic rock          |  |
| 154              | to | 149 | 135             | to | 140 | purplish-gray, slightly weathered, vesicular mafic rock          |  |
| 149              | to | 144 | 140             | to | 145 | purplish-gray, slightly weathered, vesicular mafic rock          |  |
| 144              | to | 139 | 145             | to | 150 | no sample                                                        |  |
| 139              | to | 134 | 150             | to | 155 | dark-gray, moderately vesicular, amygdaloidal mafic rock         |  |
| 134              | to | 129 | 155             | to | 160 | dark-gray, moderately vesicular, amygdaloidal mafic rock         |  |
| 129              | to | 124 | 160             | to | 165 | dark-gray, moderately vesicular, amygdaloidal mafic rock         |  |
| 124              | to | 119 | 165             | to | 170 | dark-gray, moderately vesicular, amygdaloidal mafic rock         |  |
| 119              | to | 114 | 170             | to | 175 | light-gray, partly weathered, moderately vesicular mafic rock    |  |
| 114              | to | 109 | 175             | to | 180 | red clay with some gravel and deeply weathered mafic rock clasts |  |
| 109              | to | 104 | 180             | to | 185 | red clay with some gravel and deeply weathered mafic rock clasts |  |
| 104              | to | 99  | 185             | to | 190 | brown, weathered sand with medium gray dense mafic rock          |  |
| 99               | to | 94  | 190             | to | 195 | dark-gray, dense mafic rock with olivine phenocrysts             |  |
| 94               | to | 89  | 195             | to | 200 | dark-gray, dense mafic rock with olivine phenocrysts             |  |
| 89               |    | 84  | 200             | to | 205 | dark-gray, dense mafic rock with olivine phenocrysts             |  |
| 84               |    | 79  | 205             | to | 210 | olive, consolidated mudstone with some wood fragments            |  |
| 79               |    | 74  | 210             |    | 215 | olive, consolidated mudstone with some wood fragments            |  |
| 74               |    | 69  | 215             | to | 220 | olive, consolidated mudstone with some wood fragments            |  |
| 69               |    | 64  | 220             | to | 225 | olive, consolidated mudstone with some wood fragments            |  |
| 64               |    | 59  | 225             |    | 230 | olive, consolidated mudstone with some wood fragments            |  |
| 59               |    | 54  | 230             | to | 235 | olive, consolidated mudstone with some wood fragments            |  |
| 54               |    | 49  | 235             |    | 240 | olive, consolidated mudstone with some wood fragments            |  |
| 49               |    | 44  | 240             |    | 245 | weathered mafic rock with olive mud                              |  |
| 44               |    | 39  | 245             |    | 250 | weathered mafic rock with olive mud                              |  |
| 39               |    | 34  | 250             |    | 255 | gray, unweathered mafic rock                                     |  |
| 34               |    | 29  | 255             |    | 260 | brownish-gray, slightly weathered, sparsely vesicular mafic rock |  |
|                  | to | 24  | 260             |    | 265 | brownish-gray, slightly weathered, sparsely vesicular mafic rock |  |

Appendix 1. Lithologic descriptions of drill cuttings from the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii --Continued

| Elevation<br>(feet) |    |            |     | epth<br>feet) |                    | Sample description <sup>1</sup>                                      |
|---------------------|----|------------|-----|---------------|--------------------|----------------------------------------------------------------------|
| 24 to 19            |    | 265 to 270 |     | 270           | brownish-gray sand |                                                                      |
| 19                  | to | 14         | 270 | to            | 275                | medium-gray, aphyric vesicular mafic rock                            |
| 14                  | to | 9          | 275 | to            | 280                | medium-gray, aphyric vesicular mafic rock with ash                   |
| 9                   | to | 4          | 280 | to            | 285                | brownish-gray, fine sand size volcanic ash                           |
| 4                   | to | -1         | 285 | to            | 290                | medium-gray, slightly weathered, dense mafic rock                    |
| -1                  | to | -6         | 290 | to            | 295                | medium-gray mafic rock with some amygdules                           |
| -6                  | to | -11        | 295 | to            | 300                | gray, unweathered, moderately vesicular, aphyric mafic rock          |
| -11                 | to | -16        | 300 | to            | 305                | gray, unweathered, moderately vesicular, aphyric mafic rock          |
| 16                  | to | -21        | 305 | to            | 310                | medium-gray, slightly weathered, sparsely vesicular mafic rock       |
| -21                 | to | -26        | 310 | to            | 315                | medium-gray, dense mafic rock                                        |
| -26                 | to | -31        | 315 | to            | 320                | medium-gray, dense mafic rock                                        |
| 31                  | to | -36        | 320 | to            | 325                | medium-gray, partly weathered, aphyric, vesicular mafic rock         |
| -36                 | to | -41        | 325 | to            | 330                | medium-gray, partly weathered, aphyric, vesicular mafic rock         |
| 41                  | to | -46        | 330 | to            | 335                | yellow-brown clay and gravel                                         |
| -46                 | to | -51        | 335 | to            | 340                | gray, dense mafic rock mixed with deeply weathered yellow-brown clay |
| -51                 | to | -56        | 340 | to            | 345                | gray, dense mafic rock mixed with deeply weathered yellow-brown clay |
| -56                 | to | -61        | 345 | to            | 350                | medium-gray, dense aphyric mafic rock                                |
| -61                 | to | -66        | 350 | to            | 355                | medium-gray, dense aphyric mafic rock                                |
| -66                 | to | -71        | 355 | to            | 360                | dense mafic rock mixed with red-brown clay                           |
| -71                 | to | -76        | 360 | to            | 365                | red-brown clay with dense mafic rock from above                      |
| -76                 | to | -81        | 365 | to            | 370                | red-brown clay with dense mafic rock from above                      |
| -81                 | to | -86        | 370 | to            | 375                | gray, slightly weathered, very-fine-grained dense mafic rock         |
| -86                 | to | -91        | 375 | to            | 380                | gray, slightly weathered, very-fine-grained dense mafic rock         |
| -91                 | to | -96        | 380 | to            | 385                | medium-yellowish-gray, slightly weathered, dense, aphyric mafic rock |
| -96                 | to | -101       | 385 | to            | 390                | medium-yellowish-gray, slightly weathered, dense, aphyric mafic rock |
| 101                 | to | -106       | 390 | to            | 395                | dark-gray, dense, aphyric mafic rock                                 |
| 106                 | to | -111       | 395 | to            | 400                | dark-gray, dense, aphyric mafic rock                                 |
| 111                 | to | -116       | 400 | to            | 405                | dark-gray, moderately vesicular amygdaloidal mafic rock              |
| 116                 | to | -121       | 405 | to            | 410                | dark-gray, moderately vesicular amygdaloidal mafic rock              |
| 121                 | to | -126       | 410 | to            | 415                | dark-gray, moderately vesicular amygdaloidal mafic rock              |
| 126                 | to | -131       | 415 | to            | 420                | gray, sparsely vesicular, amygdaloidal mafic rock                    |
| 131                 | to | -136       | 420 | to            | 425                | gray, sparsely vesicular, amygdaloidal mafic rock                    |
| 136                 | to | -141       | 425 | to            | 430                | gray, sparsely vesicular, amygdaloidal mafic rock                    |
| 141                 | to | -146       | 430 | to            | 435                | gray, sparsely vesicular, amygdaloidal mafic rock                    |
| 146                 | to | -151       | 435 | to            | 440                | dark-gray, moderately vesicular amygdaloidal mafic rock              |
| 151                 | to | -156       | 440 | to            | 445                | dark-gray, moderately vesicular amygdaloidal mafic rock              |
| 156                 | to | -161       | 445 | to            | 450                | medium-gray, sparsely vesicular amygdaloidal mafic rock              |
| 161                 |    | -166       | 450 | to            | 455                | medium-gray, sparsely vesicular amygdaloidal mafic rock              |
| 166                 | to | -171       | 455 | to            | 460                | medium-gray, sparsely vesicular amygdaloidal mafic rock              |
| 171                 | to | -176       | 460 | to            | 465                | medium-gray, sparsely vesicular amygdaloidal mafic rock              |
| 176                 | to | -181       | 465 | to            | 470                | medium-gray, sparsely vesicular amygdaloidal mafic rock              |
| 181                 | to | -186       | 470 | to            | 475                | gray, slightly weathered, aphyric dense mafic rock                   |
| 186                 |    | -191       | 475 | to            | 480                | gray, slightly weathered, aphyric dense mafic rock                   |
| 191                 |    | -196       | 480 | to            | 485                | dense mafic rock with some clay                                      |
| 196                 |    | -201       | 485 | to            | 490                | medium-gray, dense aphyric mafic rock                                |
| 201                 |    | -206       | 490 | to            | 495                | gray-brown clay with gravel                                          |
| 206                 |    | -211       | 495 |               | 500                | gray-brown clay with gravel                                          |
| 211                 |    | -216       | 500 |               | 505                | weathered mafic rock and clay                                        |
| 216                 |    | -221       | 505 | to            | 510                | weathered mafic rock and clay                                        |
| 221                 |    | -226       | 510 |               | 515                | dark-gray, sparsely vesicular, amygdaloidal mafic rock               |
| 226                 |    | -231       | 515 |               | 520                | dense amygdaloidal mafic rock with brown clay coatings               |
| 231                 |    | -236       | 520 |               | 525                | dense mafic rock with brown mud coatings                             |
| 236                 |    | -241       | 525 |               | 530                | dense mafic rock with brown mud coatings                             |

Appendix 1. Lithologic descriptions of drill cuttings from the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii --Continued

| Elevation<br>(feet)<br>-241 to -246 |    | Depth<br>(feet) |     |     | Sample description <sup>1</sup>                         |                                                                              |
|-------------------------------------|----|-----------------|-----|-----|---------------------------------------------------------|------------------------------------------------------------------------------|
|                                     |    | 530 to 535      |     | 535 | medium-gray, slightly vesicular amygdaloidal mafic rock |                                                                              |
| -246                                | to | -251            | 535 | to  | 540                                                     | medium-gray, slightly vesicular amygdaloidal mafic rock                      |
| -251                                | to | -256            | 540 | to  | 545                                                     | brown, highly to moderately weathered, rounded pebbles with some clay        |
| -256                                | to | -261            | 545 | to  | 550                                                     | brown, highly to moderately weathered, rounded pebbles with no clay          |
| -261                                | to | -266            | 550 | to  | 555                                                     | brownish-gray, slightly weathered, dense, medium-fine crystalline mafic rock |
| -266                                | to | -271            | 555 | to  | 560                                                     | dark-gray, dense, medium-fine crystalline mafic rock                         |
| -271                                | to | -276            | 560 | to  | 565                                                     | brownish-gray, slightly weathered, medium-fine crystalline mafic rock        |
| -276                                | to | -281            | 565 | to  | 570                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -281                                | to | -286            | 570 | to  | 575                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -286                                | to | -291            | 575 | to  | 580                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -291                                | to | -296            | 580 | to  | 585                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -296                                | to | -301            | 585 | to  | 590                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -301                                | to | -306            | 590 | to  | 595                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -306                                | to | -311            | 595 | to  | 600                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -311                                | to | -316            | 600 | to  | 605                                                     | medium-gray, dense mafic rock with small clinopyroxene crystals              |
| -316                                | to | -321            | 605 | to  | 610                                                     | dark-gray, dense, aphanitic mafic rock                                       |
| -321                                | to | -326            | 610 | to  | 615                                                     | dark-gray, dense, aphanitic mafic rock                                       |
| -326                                | to | -331            | 615 | to  | 620                                                     | dark-gray, dense, aphanitic mafic rock                                       |
| -331                                | to | -336            | 620 | to  | 625                                                     | partially weathered mixture of mafic rock pebbles and yellow-brown tuff?     |
| -336                                | to | -341            | 625 | to  | 630                                                     | dark-gray, dense, aphanitic mafic rock                                       |
| -341                                | to | -346            | 630 | to  | 635                                                     | dark-gray, dense, aphanitic mafic rock                                       |
| -346                                | to | -351            | 636 | to  | 640                                                     | dark-gray, dense, aphanitic mafic rock with dark, greenish-gray clay         |
| -351                                | to | -356            | 640 | to  | 645                                                     | dark-brownish-gray sticky mud with gravel                                    |
| -356                                | to | -361            | 645 | to  | 650                                                     | dark-brownish-gray sticky mud                                                |
| -361                                | to | -366            | 650 | to  | 655                                                     | dark-brownish-gray sticky mud                                                |
| -366                                | to | -371            | 655 | to  | 660                                                     | dark-brownish-gray sticky mud                                                |
| -371                                | to | -376            | 660 | to  | 665                                                     | sand with dark-gray mud                                                      |
| -376                                | to | -381            | 665 | to  | 670                                                     | brownish-dark-gray sticky mud with rounded, weathered pebbles                |
| -381                                | to | -386            | 670 | to  | 675                                                     | brownish-dark-gray sticky mud with rounded, weathered pebbles                |
| -386                                | to | -391            | 675 | to  | 680                                                     | brownish-dark-gray sticky mud with rounded, weathered pebbles                |
| -391                                | to | -396            | 680 | to  | 685                                                     | brownish-dark-gray sticky mud with rounded, weathered pebbles                |
| -396                                | to | -401            | 685 | to  | 690                                                     | dark-gray sticky mud with coarse sand and gravel                             |
| -401                                | to | -406            | 690 | to  | 695                                                     | very-dark sticky mud with gravel                                             |
| -406                                | to | -411            | 695 | to  | 700                                                     | very-dark sticky mud with gravel                                             |
| -411                                | to | -416            | 700 | to  | 705                                                     | very-dark sticky mud with gravel                                             |
| -416                                |    | -421            | 705 | to  | 710                                                     | very-dark sticky mud with gravel                                             |
| -421                                | to | -426            | 710 | to  | 715                                                     | dark-gray, unweathered to slightly weathered, dense, aphanitic mafic rock    |
| -426                                |    | -431            | 715 |     | 720                                                     | dark-gray, unweathered to slightly weathered, dense, aphanitic mafic rock    |
| -431                                | to | -436            | 720 | to  | 725                                                     | dark-gray, unweathered to slightly weathered, dense, aphanitic mafic rock    |
| -436                                |    | -441            | 725 | to  | 730                                                     | dark-gray, weathered, mafic rock with gray mud                               |
| -441                                |    | -446            | 730 | to  | 735                                                     | dark-gray, weathered, mafic rock with gray mud                               |
| -446                                |    | -451            | 735 |     | 740                                                     | medium-gray, moderately weathered, mafic rock                                |
| -451                                |    | -456            | 740 | to  | 745                                                     | dark-brown, weathered, mafic rock gravel                                     |
| -456                                |    | -461            | 745 |     | 750                                                     | dark-gray, slightly weathered, hard mafic rock                               |
| -461                                |    | -466            | 750 |     | 755                                                     | medium-gray, moderately weathered, mafic rock                                |
| -466                                |    | -471            | 755 |     | 760                                                     | medium-gray, moderately weathered, mafic rock                                |
| -471                                |    | -476            | 760 |     | 765                                                     | medium-gray, moderately weathered, mafic rock                                |
| -476                                |    | -481            | 765 |     | 770                                                     | mixed moderately to highly weathered rounded mafic rock gravel               |
| -481                                | to | -486            | 770 |     | 775                                                     | mixed moderately to highly weathered rounded mafic rock gravel               |
| -486                                | to | -491            | 775 | to  | 780                                                     | rounded pebbles, coarse sand, and dark-brown mud                             |
| -491                                | to | -496            | 780 |     | 785                                                     | rounded pebbles, coarse sand, and dark-brown mud                             |
| -496                                | to | -501            | 785 | to  | 790                                                     | rounded pebbles, coarse sand, and dark- brown mud                            |
| -501                                | to | -506            | 790 | to  | 795                                                     | rounded pebbles, coarse sand, and dark-brown mud                             |

Appendix 1. Lithologic descriptions of drill cuttings from the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii --Continued

| Elevation (feet) |    |      | Depth<br>(feet) |    |       | Sample description <sup>1</sup>                                          |  |  |
|------------------|----|------|-----------------|----|-------|--------------------------------------------------------------------------|--|--|
| -506             | to | -511 | 795 to 800      |    | 800   | dark-brown, weathered, sticky clay with pebbles                          |  |  |
| -511             | to | -516 | 800             | to | 805   | dark-brown, weathered, sticky clay with pebbles                          |  |  |
| -516             | to | -521 | 805             | to | 810   | dark-brown, weathered, sticky clay with pebbles                          |  |  |
| -521             | to | -526 | 810             | to | 815   | dark-brown, weathered, sticky clay                                       |  |  |
| -526             | to | -531 | 815             | to | 820   | dark-brown, weathered, sticky clay                                       |  |  |
| -531             | to | -536 | 820             | to | 825   | dark-brown, weathered, sticky clay                                       |  |  |
| -536             | to | -541 | 825             | to | 830   | dark-brown, weathered, sticky clay with few pebbles                      |  |  |
| -541             | to | -546 | 830             | to | 835   | dark-brown, weathered, sticky clay with few pebbles                      |  |  |
| -546             | to | -551 | 835             | to | 840   | red-brown, weathered, sticky clay                                        |  |  |
| -551             | to | -556 | 840             | to | 845   | red-brown, weathered, sticky clay                                        |  |  |
| -556             | to | -561 | 845             | to | 850   | weathered, rounded pebbles and coarse sand                               |  |  |
| -561             | to | -566 | 850             | to | 855   | weathered, rounded pebbles and coarse sand                               |  |  |
| -566             | to | -571 | 855             | to | 860   | weathered, rounded pebbles, coarse sand, and red-brown clay              |  |  |
| -571             | to | -576 | 860             | to | 865   | weathered, rounded pebbles, coarse sand, and red-brown clay              |  |  |
| -576             | to | -581 | 865             | to | 870   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -581             | to | -586 | 870             | to | 875   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -586             | to | -591 | 875             | to | 880   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -591             | to | -596 | 880             | to | 885   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -596             | to | -601 | 885             | to | 890   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -601             | to | -606 | 890             | to | 895   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -606             | to | -611 | 895             | to | 900   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -611             | to | -616 | 900             | to | 905   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -616             | to | -621 | 905             | to | 910   | weathered, rounded pebbles and dark-brown, sticky mud                    |  |  |
| -621             | to | -626 | 910             | to | 915   | dark-brown pebbles, coarse sand, and highly weathered rounded gravel     |  |  |
| -626             | to | -631 | 915             | to | 920   | dark-brown pebbles, coarse sand, and highly weathered rounded gravel     |  |  |
| -631             | to | -636 | 920             | to | 925   | dark-brown pebbles, coarse sand, and highly weathered rounded gravel     |  |  |
| -636             | to | -641 | 925             | to | 930   | dark-brown pebbles, coarse sand, and highly weathered rounded gravel     |  |  |
| -641             | to | -646 | 930             | to | 935   | dark-brown pebbles, coarse sand, and highly weathered rounded gravel     |  |  |
| -646             | to | -651 | 935             | to | 940   | dark-brown pebbles, coarse sand, and highly weathered rounded gravel     |  |  |
| -651             | to | -656 | 940             | to | 945   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -656             | to | -661 | 945             | to | 950   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -661             | to | -666 | 950             | to | 955   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -666             | to | -671 | 955             | to | 960   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -671             | to | -676 | 960             | to | 965   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -676             |    | -681 | 965             | to | 970   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -681             |    | -686 | 970             | to | 975   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -686             |    | -691 | 975             | to | 980   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -691             |    | -696 | 980             | to | 985   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -696             |    | -701 |                 | to | 990   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -701             |    | -706 | 990             | to | 995   | pebbles, coarse sand, dark-brown mud, and highly weathered rounded grave |  |  |
| -706             |    | -711 | 995             | to | 1,000 | black, very dense, aphyric mafic rock                                    |  |  |
| -711             |    | -716 | 1,000           | to | 1,005 | black, very dense, aphyric mafic rock                                    |  |  |
| -716             |    | -721 | 1,005           | to | 1,010 | black, very dense, aphyric mafic rock                                    |  |  |
| -721             |    | -726 | 1,010           | to | 1,015 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -726             |    | -731 | 1,015           | to | 1,020 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -731             |    | -736 | 1,020           | to | 1,025 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -736             |    | -741 | 1,025           | to | 1,030 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -741             |    | -746 | 1,030           | to | 1,035 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -746             |    | -751 | 1,035           | to | 1,040 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -751             |    | -756 | 1,040           | to | 1,045 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -756             |    | -761 | 1,045           | to | 1,050 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -761             |    | -766 | 1,050           | to | 1,055 | yellow-brown, weathered, rounded gravel                                  |  |  |
| -766             | to | -771 | 1,055           | to | 1,060 | yellow-brown, weathered, rounded gravel                                  |  |  |

Appendix 1. Lithologic descriptions of drill cuttings from the South Wailua monitor well (State well 2-0121-01), Kauai, Hawaii --Continued

|      | Elevation<br>(feet) |      | Depth<br>(feet) |    |       | Sample description <sup>1</sup>         |  |
|------|---------------------|------|-----------------|----|-------|-----------------------------------------|--|
| -771 | to                  | -776 | 1,060           | to | 1,065 | yellow-brown, weathered, rounded gravel |  |
| -776 | to                  | -781 | 1,065           | to | 1,070 | yellow-brown, weathered, rounded gravel |  |
| -781 | to                  | -786 | 1,070           | to | 1,075 | yellow-brown, weathered, rounded gravel |  |
| -786 | to                  | -791 | 1,075           | to | 1,080 | yellow-brown, weathered, rounded gravel |  |
| -791 | to                  | -796 | 1,080           | to | 1,085 | yellow-brown, weathered, rounded gravel |  |
| -796 | to                  | -801 | 1,085           | to | 1,090 | yellow-brown, weathered, rounded gravel |  |
| -801 | to                  | -806 | 1,090           | to | 1,095 | yellow-brown, weathered, rounded gravel |  |
| -806 | to                  | -811 | 1,095           | to | 1,100 | yellow-brown, weathered, rounded gravel |  |
| -811 | to                  | -816 | 1,100           | to | 1,105 | yellow-brown, weathered, rounded gravel |  |
| -816 | to                  | -821 | 1,105           | to | 1,110 | yellow-brown, weathered, rounded gravel |  |
| -821 | to                  | -826 | 1,110           | to | 1,115 | yellow-brown, weathered, rounded gravel |  |
| -826 | to                  | 831  | 1,115           | to | 1,120 | yellow-brown, weathered, rounded gravel |  |
| 831  | to                  | -836 | 1,120           | to | 1,125 | yellow-brown, weathered, rounded gravel |  |
| -836 | to                  | -841 | 1,125           | to | 1,130 | yellow-brown, weathered, rounded gravel |  |
| -841 | to                  | -846 | 1,130           | to | 1,135 | yellow-brown, weathered, rounded gravel |  |
| -846 | to                  | -851 | 1,135           | to | 1,140 | yellow-brown, weathered, rounded gravel |  |
| -851 | to                  | -856 | 1,140           | to | 1,145 | yellow-brown, weathered, rounded gravel |  |
| -856 | to                  | -861 | 1,145           | to | 1,150 | yellow-brown, weathered, rounded gravel |  |
| -861 | to                  | -866 | 1,150           | to | 1,155 | yellow-brown, weathered, rounded gravel |  |
| -866 | to                  | -871 | 1,155           | to | 1,160 | yellow-brown, weathered, rounded gravel |  |